
Conformance Testing of TINA Service Components
- The T T C N / C O R B A Gateway

Ina Schieferdecker, Mang Li, Andreas Hoffmann
GMD FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

e-mail: { Schieferdecker, M.Li, A.Hoffmann} @fokus.gmd.de,
URL: http:llwww.fokus.gmd.delstepl

Abstract. This paper considers conformance testing of TINA service
components in the realm of the ITU-T conformance testing methodology,
which provides the only standardized, well accepted and widely used test
methodology and test notation TTCN. It discusses the use of TI'CN for
testing computational objects of service components and proposes an
implementation approach to derive executable tests from TI'CN, which can
be executed on any CORBA compliant ORB (with minor efforts for ORB
specific adaptation) to check the functional correctness of deployed service
components in distributed object environments. The TI'CN/CORBA gateway
is a general approach for testing distributed systems. TINA is taken as an
example in this paper only. The work presented has been partially supported
by the EC ACTS project TOSCA -TINA Open Service Creation Architecture,
AC237.

1 In~oducfion

With the development of TINA (Telecommunications Information Networking
Architecture) and the provision of new and complex TINA services such as
telecommunication, management and information services, which may be deployed
in the context of various distributed object computing environments like the OMG
CORBA (Common Object Request Broker Architecture [8]) or OSF DCE
(Distributed Computing Environment [10]), the need to be able to validate and test
large and heterogeneous object systems is becoming increasingly important. In
particular, it is not sufficient to validate TINA services on specification level (with
one of the formal based object-oriented modeling techniques such as the SDL -
System Description and Specification Language - based Object Modeling Technique
[11]) only, but also to test them in the target environment. Testing may be used to
check

�9 service components individually,

�9 conformance to TINA reference points,

�9 the individual service components working together as well as

�9 to check individual services working together in a multi-service environment.

394 Ina Schieferdecker et al Service Creation

A service component and service test is intended to determine whether deployed
service components and services are ready to ship by observing how the service and
service components perform in the target environment while attempting to emulate
their real use. Hence, testing should encompass functional, performance, and
robustness tests. It should also cover operational, installation and usability aspects of
the service and service components. Testing is an essential activity in the pre-
deployment phase of the TINA service life cycle

�9 for determining, whether services and service components conform to their
specification,

�9 to simplify service procurement,

�9 to reduce the risks and costs related to purchasing services,

�9 to allow for unbiased comparison of various implementations and repeatability of
tests using different means of testing and

�9 to increase the likelihood that services from multiple service providers are
interoperable.

The paper concentrates on testing the functional aspects of service components and
services. Functional testing is also referred to as conformance testing. The widely
used methodology for testing the conformance of protocol implementations is
described in [15], where also the only standardized test notation TI'CN (Tree and
Tabular Combined Notation) is defined. It should be noted that conformance testing
can only show the presence of functional errors and cannot guarantee their absence.
Consequently, conformance testing is not a means to prove a 100% compliance to a
specification. In particular, exhaustive testing is not practical and generally too
expensive. Therefore, any testing should concentrate on the essential and
indispensable aspects of the tested system.

The paper is structured as follows: Section 2 gives a short overview on the TINA
service creation process as defined by TOSCA and the role of conformance testing in
this process. Section 3 considers related work on testing of distributed systems, while
the specifics of testing TINA service components are discussed in Section 4. The
mapping rules of TINA ODL specifications to TI'CN declarations is described in
Section 5, which is followed by an example in Section 6. The TI'CN/CORBA
gateway being an approach for executing TI'CN test cases on CORBA platforms is
presented in Section 7. Conclusions finish the paper.

2 Conformance Testing in the TOSCA Approach for TINA
Service Creation

The increasing complexity of TINA services leads to the needs of a methodology for
the creation of validated TINA services. An important goal of the TOSCA project
[20] is to develop a methodology that supports the validation of TINA services in
course of their creation process, i.e. before service deployment. Currently, TOSCA

Conformance Testing of TINA Service Components... 395

works on an integrated tool set to automate the service creation process as much as
possible.

TINA services are designed to run in a distributed service environment, which is
defined by the general service architecture [4]. It consists of three layers: the access
session, which provides an uniform access to all TINA services, the service session,
which is started after an access session has been established for a customer and a
service has been selected, and the communication session, which manages the
network resources for the service. The service architecture defines a set of
components, which provide means to segment the functionality of TINA services. A
TINA Service Component (SC) encapsulates data and functionality. Service
components are defined by means of an ODP (Open Distributed Processing [9])
computational viewpoint specification and are mapped to computational objects
(COs) or computational object groups as defined in [6].

The work of TOSCA focusses mainly on the service session, but considers also
aspects of the access session. To enable rapid service creation, the TOSCA project
has adopted and extended the framework idea known from object-oriented
technology. A TOSCA-framework is used to describe a family of similar services (so
called service class) in a generic manner. It provides reusable classes of
computational objects and well-defined configurations for them. It consists of a
generic part, which is fixed for the service class, and a flexible part, which contains
flexibility points. Flexibility points are place holders in the descriptions of
computational objects for things like parameters, types, operations, and behaviour.
Constraints can be used to restrict the set of possible replacements. Flexibility points
have to be filled during the service creation process. For some of them default
behaviours may be defined which may be replaced during the service creation
process.

TOSCA-frameworks are intended to support both service designers, who are
programmers with technical knowledge, and business consultants, who are not very
familiar with technical details, in the service creation process. A service designer
may create a new service by filling the framework's flexibility points manually with
its technical expertise. This will be done mostly by specialization of abstract classes
of the framework.

In addition, TOSCA proposes an abstract and less technical view on frameworks in
order to ease the instantiation of frameworks by business consultants. Each abstract
view on a framework is called a paradigm. Paradigm tools may offer predefined
building blocks as plug-ins for flexibility points and provide user-friendly interfaces.

The TOSCA service creation process from the testing point of view (i.e. the creation
of frameworks is not fully reflected) is shown in Figure 1. A TOSCA framework may
be developed either from the scratch or through the generalization of an already
existing service, i.e. the service is made more abstractly by adding flexibility points.

A TOSCA-framework has two representations: as implementation code, e.g. written
in C++, and as SDL specification. The specification has to be a compliant model of
the implementation code and is needed for validation. Validation methods will be

396 Ina Schieferdecker et al Service Creation

used for the abstract framework as well as for the specialized framework, where the
flexibility points have been filled. It should be noted that during the framework
specialization process, the flexibility points of the framework's implementation as
well as those of the SDL model have to be completely filled (at least those flexibility
points which do not have any predefined default behaviour). Once the specialized
framework has been validated, TI'CN test cases can be (semi-)automatically derived
from the SDL model. The executable TTCN test system is used to check whether the
running service that resulted from the framework's implementation code, meets the
conformance requirements and is or is not ready for deployment.

An automation of the above described testing process is needed to make it efficient
and repeatable and to make test results comparable. The starting point of any
automated testing is the design and specification of test cases, which are used to
check certain conformance requirements. Ideally, test cases are written in an abstract
manner to be independent from hard- and software constraints. This purpose is well
supported by TTCN. The conformance testing methodology in [14] defines an
automated test process that includes the generation of executable tests from TTCN
test cases, test execution, and test verdict assignment. This is mainly achieved by
defining an operational semantics for each of the "I'I'CN constructs. The semantics of
TTCN is the basis for the development of TI'CN analyzers, compilers and execution
environments.

Figure 1: Testing in the TOSCA Service Creation Process

Conformance Testing of TINA Service Components... 397

The information flows between the different notations used for specification,
implementation and test case development are shown in Figure 2. The ODL 0DL)
specifications of service components are the starting point for generating
automatically SDL skeletons. Once the SDL model has been completed (e.g. by
adding behaviour) and validated, it can be used to generate implementation code as
well as to derive TFCN test cases. Another way for test case development is to obtain
the data types directly from the ODL (IDL) specification, while the test case
behaviour is developed manually. Furthermore, the IDL parts of the ODL
specifications are used by the CORBA interface repository to support the interaction
between the testing and the tested system.

Figure 2: Information Flows in the Service Creation Process

3 Related Work

Testing of distributed object systems is an upcoming issue and has been investigated
only recently (an overview is given in [19]). CORBA based test environments are
discussed in [17] and [16]. To the authors best knowledge, neither results on the use
of TTCN for testing distributed systems (only [16] recommends the use of TTCN
without discussing technical details) nor on a testing methodology for TINA
services (the OMG Test Special Interest Group was set up in 1996 to address this
issue) are available.

The grade of testability of a distributed system is determined by the following
aspects:

�9 The anticipated real-use scenarios of the system have to be covered by test cases.
In practice, there are significant limitations due to the complexity of distributed
systems, so that only a restricted set of test cases can be applied.

398 Ina Schieferdecker et al Service Creation

�9 Every significant event exchanged between the tested and the test system has to
be observable. In addition, also the ordering and timing of those events have to be
observable. Observability is the precondition to determine whether the tested
system behaves correctly.

�9 The test system must be able to control the execution of the tested system, so that
test executions are reproducible and so that test results are deterministic and
repeatable.

According to [18], the concurrent nature of distributed systems is the source of
making their testing harder than testing sequential systems:

�9 The probe effect, which reflects the effect of changed behaviour of a system when
attempting to observe it, may occur.

�9 Racing conditions in concurrent activities may lead to non-reproducible
behaviour.

�9 A synchronized global clock has to be realized for observability of test events.

These aspects are to a great extend determined by the system architecture of the
tested and test system and are discussed for TINA service components in a
subsequent section. Since the grade of concurrency in the test and tested systems
defines the complexity of testing and determines applicable test architectures, a
taxonomy for testing that depends on the grade of distribution is given in Table 1.

Table 1: The Testing Taxonomy (with Respect to the Grade of Distribution)

Type System under Test Test System Selected Approaches
CC centralized centrafized ' ISO Conformance Tes~ng: Peer-to-Peer [15]
CD centralized distributed ! ISO Conformance Testing: Multiparty, Testin~ [15]
DC distributed centralized Test Execution of Telecommunications Services [I 6]
DD distributed distributed General Design Rules for Distributed Tester [19]

TINA services are distributed and may be tested by means of a centralized or
distributed test system. A centralized test system uses a sequential test case
behaviour. Its ability to detect the interactions between the system under test (SUT)
and test system at a central side implies a global knowledge of the test execution.
The test events are causally ordered, what eases the test verdict assignment and
makes test results repeatable. However, the complexity of a centralized tester is
magnitudes larger than a distributed tester.

Due to complexity reasons, the work concentrates on a distributed test system. Such a
test system can be structured similar to the system under test itself: PCOs per
interfaces of service components or computational objects are controlled and
monitored by parallel test components. Care has to be taken on the synchronization
between the individual parallel test components: the parallel test components assign
test verdicts on the basis of their local knowledge about the test execution. A main
test component (MTC) is used to coordinate them and to accumulate the individual
local test verdicts into the global one.

Conformance Testing of TINA Service Components... 399

4 Test Objectives for TINA Service Components

Conformance testing considers the system under test to be a black-box, i.e. the
internal structure and the internal behaviour is invisible. The test system interacts
with the system under test only via the interfaces and assigns test verdicts after
comparing observed reactions from the system under test with the expected ones.

The TINA business model [4] defines business roles and business relationships: a
consumer uses services that are provided by a TINA system, a broker supplies
information that enables a stakeholder to find other stakeholders and services, a
retailer serves stakeholders by offering them access to services, a third party provider
supports retailers or other third party providers with services, and, last but not least,
a connectivity provider manages the communication network. The relationships
between business roles are defined by means of reference points. The TINA service
architecture defmes the broker, retailer, third party service provider, and retailer-to-
retailer reference points. It should be noted that currently only the retailer reference
point is standardized. It supports the consumer's needs for accessing services from a
retailer and offers functionality for the access part, e.g. discovery of services or
initiation of usage, and usage part, e.g. control and management of sessions.
Reference points are inter-domain reference points, since every business role is
performed by a separate business administrative domain.

Figure 3: Example of Consumer-Retailer Roles Using Service Components

Consequently, reference points have to be tested to validate the correctness of
interworking of business domains. Testing of reference points refers to testing the
interfaces of those service components that interact at the respective reference points.

Another objective for testing would be to test the individual computational objects
that are used for realizing service components. Again, a black-box approach can be
used to test the computational objects via their interfaces and by abstracting from
their internals. From the TINA service architecture perspective, testing of

400 Ina Schieferdecker et ai Service Creation

computational objects is based on the structuring information of service components.
It uses therefore a grey-box testing approach. The service components are not
considered to be a black-box, but rather their internal structure on the configuration
of computational objects with their interfaces has to be known. Due to political
reasons, it might be practically useful for in-house tests rather than for third-party
tests at an external test lab. However, testing the individual computational objects
can use the same testing technique like testing service components - it is the question
which implementation parts are accessible and observable by the test system.

5 The TINA ODL to TTCN Mapping

A TINA service component (SC) is defined as a single computational object (CO) in
ODL (Object Definition Language [7]). All interfaces of the SC are defined in OMG
IDL (Interface Definition Language [8]). It should be noted that this is only a CO
representation of the SC, which is used to unambiguously define the interface of the
component. However, that does not mean that the distribution of SC is restricted to a
single DPE (Distributed Processing Environment) node. In fact, there may be several
CO mappings for an SC. TINA ODL is a superset and extension of the OMG IDL
which is defined by the Object Management Group (OMG) in the CORBA (Common
Object Request Broker Architecture) context 1. The specification of the interface of a
service providing object in OMG IDL defines what operations are available by the
object and how they should be invoked, independently of technology and
programming language. In such a manner, equivalent information is offered to all
service requesters (clients) from whom implementation details of service providers
(servers) are hidden.

For the computational interfaces of TINA services components, specifications in IDL
give adequate basic information for the development of TFCN test cases. An SC is
considered to be a black-box, so that groups of computational objects cannot be
distinguished from single computational objects. In particular, each interface of the
SC is tested separately (see also below).

Mapping rules are defined for the translation of information from IDL specifications
into TrCN compliant representations. They are described in the following:

�9 An IDL module provides a name scope and a mechanism to group interfaces.
Although the second edition of TTCN supports a module concept for, besides
other things, name scoping, it is currently not supported by any TTCN tool
environment. Since the presented work aims at finding a practical approach for
testing TINA service components, we decided to stick with the previous, tool
supported version of TTCN. Therefore, an IDL modules and all other name

1
ODL extends IDL with the concept of streams, with structuring features for groups of computational objects

and with the ability to define multiple interfaces for computational objects. Testing of streams is a separate
issue for future research.

Conformance Testing of TINA Service Components... 401

scopes are flattened. Scope names are mapped to prefixes, which are added to the
identifiers of the types contained in the scope.

�9 For every IDL interface type a separate test group is introduced to structure the
TTCN test suite in accordance with the interface structure of the tested service
component. For each service component with multiple interfaces a test group is
introduced, which contains sub test groups, one for each provided interface.

�9 Interface inheritance is not supported by TTCN. Therefore, all user-defined
types, attributes and operations which are inherited from the parent interface(s)
and are not redefined, have to be duplicated in the TI'CN specification for the
derived type.

�9 An IDL operation describes a method that can be invoked from outside. Since
TTCN uses asynchronous communication for the exchange of test events, IDLs
synchronous mode of operations has to be emulated: A synchronous IDL
operation is mapped to two ASP (abstract service primitives) types:

- an ASP type for requests on the operation. The identifier of the ASP type is
composed of the prefix "pCALI. " followed by the corresponding scope
names and as last the operation name, e.g. pCALL__TINA
RetRetailer i_RetailerInitial__requestNamedAccess. The "in"
and "inout" parameters fill the body of the ASP type definition as a
SEQUENCE, keeping the order of the parameters in the IDL specification.

- a second ASP type for replies of the operation. The identifier of the ASP type
is composed of the prefix "pREPLY " followed by the corresponding scope
names and the operation name, e.g. pREPLY TINA

RetRP i RetailerInitial requestNamedAccess. The "inout" and
"out" parameters fill the body of the ASP type definition as a SEQUENCE,
keeping the order of the parameters in the IDL specification. In addition, an
optional content field for the return value is also reserved.

An asynchronous IDL operation with the attribute "oneway" is mapped only to an
ASP type with the prefix "pCALL ".

�9 An IDL exception describes exceptional cases during operation invocation or
execution. It is mapped to an ASP type. The identifier of the ASP type begins
with the prefix "pRAISE__", which is followed by the appropriate scope names.

�9 An IDL attribute definition is logically equivalent to describing a pair of accessor
functions: a ,,get" function to retrieve the value of the attribute and a ,,set"
function to set the value of the attribute. Therefore, IDL attributes have similar
mappings as IDL operations. A read-write attribute is mapped as the following:

- The ,,set" function is mapped as an ,,one-way" operation, to a request ASP
type with an ,,in" parameter of the same type as the attribute.

- The ,,get" function is mapped to a request ASP type without parameter fields
and a reply ASP type with a content field for returned attribute value.

For ,,read-only" attributes only the ,,get" function has to be defined.

402 Ina Schieferdecker et al Service Creation

�9 Most of the IDL basic types are mapped to ASN.1 types of the TTCN test suite.
The IDL types "float" and "double" cannot be mapped, because TTCN does not
support floating types. IDL "typedef' are translated to TTCN ASN.1 type
definitions.

�9 IDL constants are mapped to TTCN constant declarations.

The mapping rules support only the translation to TTCN type declarations. The
constraints part and especially the dynamic behaviour part of a TTCN test suite must
be added in subsequent steps of test suite development. It should be based on the
service component specification and can be developed either manually or semi-
automatically by the use of test case generation methods. For example, [12] describes
an approach of deriving SDL skeletons from ODIdlDL specifications, enhancing it
with object behaviour and using the completed SDL specification as a basis for test
case derivation. Test case derivation tools such as SaMstAG [16] can be used here.

6 A n Example - Test Cases for the Service Access Sess ion

This section presents selected aspects of test cases for the initial access interface of
the TINA Retailer Reference Point. The TTCN test cases are developed by using the
TINA ODL to TTCN mapping rules presented in Section 0. A test case that verifies
the very first interaction between a consumer and a retailer, is shown as an example
(see Figure). The dynamic behaviour of the test case has been developed manually
on the basis of the textual description of an example scenario of the TINA Ret
Reference Point Specifications [5].

Figure 4: Configuration for the Access Session Example

The implementation under test (IUT) is in this case an implementation of the
interface i _ R e t a i l e r l n i t i a l provided by a retailer. The TI?CN test system
emulates a consumer. The behaviour of the test presented in the figure below can be
read as follows:

Conformance Testing of T I N A Service Components.. . 403

�9 The reference of the interface i_RetailerInitial tO be tested is gained and
connected with the test system via a PCO named POOl i R e t a i l e r I n i t i a l
(line 1).

�9 Via this PCO, a request on the operation r e q u e s t N a m e d A c c e s s ()wi th valid
identif icat ion information is sent (line 2).

�9 When the expected reply is received, a pre l iminary PASS verdict is marked, the
reference to an i_RetailerNamedAccess interface as well as the access
session secret ID and the access session ID are extracted from the message (line

3).

�9 I f the test suite operation a c t i v e P C O () for connecting the appropriate PCO
with the interface i _ R e t a i l e r N a m e d A c c e s s returns successfully, the access
session is established (line 4). A postamble closes the access session in this case
(line 5). Otherwise, an INCONCLUSIVE verdict is given and the test case is
terminated.

�9 The test case ends also with a FAIL verdict, i f replies other than the expected
one, e.g. exceptions, are received (line 7). It shall be mentioned that a s implif ied
presentat ion of the test case is shown here. Fo r example, a t imer should be added
to constrain the t ime a client awaits reply,

Test Case Dynamic Behavior

Test Case Name: EstablishAccessSessionl
Group: TINARetRetailerlnitial
Purpose: To verify that in the case that CORBA security services are used, on receipt of an

invocation on the operation requestNamedAccess0 of the interface
TINARetRetailerInifiah:i_RetailerInitial, a reference to a
TINARetRetailerAccess::i_RetailerN~Access interface is returned.

Selection Ref: Securit),ServiceUsed
r t Behavior Description

+GetInitialRef
(PCOName PCO1 i RetailerInitial, ObjName_
i Retailerlnitial, ref__i_Retailerlnitial_usrl)

PCO1 i Retailerlnitial
!pCALL__TINARetRetailerlnitial i RetailerInitial_
_requestNamedAccess

PCO1 i Retailerlnitial
.%pREPLY TINARetRetailerlnitial i_Retailer
Initial requestNamedAccess
(ref_i RetailerNamedAccess_usr I :=
pREPLY__~NARetRetailerlnitial i Retailer
Initial requestNamedAccess.namedAccessIR,
asSecretID_usr I :=
pREPLY_._TINARetRetailerlnitial i Retailer
Initial requestNamedAccess.asSecretld,
asID_usr 1 :=pREPLY__TINARetRetailerlnitial_
_i RetailerInitial requestNamedAccess.asId)

[activatePCO
(PCOName._PCO 1 i_RetailerNamedAccess,
ref i RetailerNamedAccess_usrl) = TRUE]

Constraints Ref V C

pCALL i_Retailerlnitial_
_requestNamedAccess sl

pREPLY_.i_Retailerlnitial_ (P)
._requestNamedAccess__r 1

404 Ina Schieferdecker et al Service Creation

+EndAS (asSecretID_usrl, SpecifiedAccess
Sessions 1, EndASOption_usrl)

[activatePCO
(PCOName PCO1 i_RetailerNamedAccess,
ref_i_RetailerNamedAccessusrl) = FALSE]

7 ?OTHERWISE F

Figure 5: A Test Case for the Service Access Session

7 The TTCN/CORBA Gateway

In this section we discuss the implementation of abstract TTCN test cases in a
CORBA environment. CORBA is an object-oriented architecture for a distribution
transparent communication supporting client-server applications. The central
component of CORBA - the ORB (Object Request Broker) - is responsible for
transparent relaying object requests, with the help of static or dynamic stub and
skeleton interfaces. Object services such as Naming Service, Interface Repository and
Implementation Repository offer persistent information at run time. The standard
CORBA interfaces are specified using OMG IDL. Mappings for programming
languages C, C++, Java, Smalltalk are already defined in[] to support CORBA
based multi-lingual implementations. CORBA is the basic technology of TINA. As
mentioned in section 5, the definition language TINA ODL has OMG IDL as the
integrated part for specifying interfaces of computational objects. Most of the known
implementation of TINA-DPE and TINA services are implemented using CORBA.

In order to test a CORBA based implementation, the test system must be integrated
into the CORBA environment. With TTCN and the mapping rules introduced in
section 5, the specification of related behaviour of such a test system on a high
abstraction level is provided. The key issue of the realization of the test system is the
bridging between a message-oriented non-CORBA system and the CORBA ORB.
The basic issues of bridging within CORBA, e.g. building inter-ORB bridges and
interceptors [8], and between CORBA and non-CORBA systems, e.g. TMN-CORBA
interworking [1], have been discussed in a number of documents. The goal of the
work presented in this paper is to provide a practical approach for the execution of
Tl'CN-based test cases on a CORBA platform.

A typical TTCN code generator provides the translation of abstract test cases to
language specific code, and an open interface (in form of function calls) for the
adaptation of the test system to the particularities of the SUT. The adaptation
includes the implementation of the TTCN snapshot mechanism, the implementation
of the mechanism for dispatching ASPs/PDUs, which depends on the manner in
which the communication to/from the SUT is carded out, and other functionality like
configuration of the test system and management of timers. In addition, the SUT
dependent parts of the encoding and decoding functionality for messages have to be
provided.

Conformance Testing of TINA Service Components... 405

In our case, the SUT is specified using OMG IDL and is implemented using CORBA
as the underlying communication medium. Since the message processing
mechanisms are CORBA specific but not dependent on particular SUT types, the
adaptation part and the major part of the encoding/decoding functions are generic for
all test cases and can be generated applying the same mapping rules. However, the
generated code normally has tool specific function calls. In order to build a modular
test system with reusable components, a tool-independent component called
TTCN/CORBA Gateway is introduced. This component is designed to have the
following properties:

�9 An interface is provided to support TFCN specific functions, such as sending and
receiving of messages. Additional operations for the support of test systems with
distributed test components shall be offered.

�9 It is capable to communicate with the SUT via CORBA.

�9 It is independent of particular SUT types and has therefore high flexibility.

With the TTCN/CORBA Gateway, the tool-specific adaptation of the test system can
be reduced to a minimum. The complete executable test system can be divided into a
generic part and a (minimal) specific part. The generic part is the TI'CN/CORBA
Gateway. The specific part consist of the test cases as defined in TTCN and are
executed by use of the generic part. It uses the Gateway as a high-level bridge to test
services provided by a particular SUT. In accordance to the TI'CN terminology we
use subsequently the notion executable test suite (ETS) to refer to the specific part of
the test system.

Considering the realization of the Gateway, principally an application has three
means to communicate with an CORBA ORB:

1. Using the object specific static stub and skeleton interfaces.

2. Using the dynamic invocation and skeleton interfaces, which are common for all
objects.

3. Building an inter-ORB bridge using ORB internal or public APIs (see CORBA
2.2).

The third case involves the handling of low-level transport mechanism directly by
the application. This may be essential for performance sensitive operations.
However, due to its complexity the third case is currently not used by the Gateway.

The Gateway uses both the first and the second means in its implementation. Details
are discussed in the following. Figure 6 illustrates the relationship between four
major systems involved in the testing: an underlying interoperable ORB with the
supported interfaces and interface repository, a system under test on the right side,
the TFCN/CORBA Gateway on the left side, and an executable test suite which is
capable to interact with the SUT over the Gateway and the ORB.

Functionally, the Gateway consists of three parts called GatewayMain,
GatewayClient and GatewayServer. An object implementation normally contains a
client part and a server part. The test system generally plays the role of the

406 Ina Schieferdecker et al Service Creation

counterpart of the SUT when testing it. In order to test a service of the SUT, the
behaviour of a corresponding client is emulated by a tester (a logical component of a
test system). To support transformation and handling of requests passed by the tester,
the GatewayClient is constructed. In some cases, the counterpart of a client of the
SUT need also be emulated by a tester to trigger the SUT into a desired state.
Requests from the SUT relayed by the ORB are prepared by the GatewayServer for
the corresponding tester. GatewayClient and GatewayServer are also responsible to
proceed the replies and exceptions to the appropriate requesters. At run time,
multiple instances of GatewayClient and GatewayServer may be created. Each of
them is associated with an instance of either a provided or a requested OMG IDL
interface of the SUT, which is an object reference in the CORBA context.
Additionally, they are all locally managed by the GatewayMain, which provides the
interface of the Gateway to the ETS. A set of operations (in the sense of services) are
offered by the GatewayMain. For example, to send a message that includes
information for a request, a reply or an exception, the GWSend0 operation on
GatewayMain is called by the ETS. The GWReceive0 operation is called by the ETS
to inquire whether some message from the ORB is already prepared by
GatewayMain.

Technically, the Gateway itself is a full CORBA compliant application. The
interfaces of GatewayMain, GatewayClient and GatewayServer are specified in OMG
IDL. The internal communication between these objects is carried out by static stubs
and skeletons. To achieve the flexibility of the Gateway, requests on SUT server
objects via GatewayClient are dispatched to the ORB using the Dynamic Invocation
Interface (DII). Analogously, the Dynamic Skeleton Interface (DSI) is used by the
GatewayServer implementation. To obtain OMG IDL definitions at run time to
determine e.g. the signature of the operation a GatewayClient instance is to request,
or a GatewayServer instance is to offer, the CORBA Interface Repository is applied.

Finally, it should be emphasized that the construction of the Gateway supports
distributed test components. The behaviour of a test system with parallel components
can be specified using Concurrent TTCN. A typical Concurrent TTCN test
configuration has a main test component (MTC) and one or more parallel test
components (PTCs). MTC and PTCs communicate with each other over coordination
points (CPs) with coordination messages (CMs). At the beginning of a test, we may
associate each of the components with an instance of GatewayMain. Since
GatewayMain objects are CORBA objects, the fundamental distribution transparent
communication between the components is already supplied by the ORB.
GatewayMain needs to have appropriate functionality to support CPs and CMs. We
are working on the implementation details for this feature.

Conformance Testing of TINA Service Components... 407

TTCIq run-time Help
I beb.viour IJ fmc.
I ~o~.~o~ I A~pt~

~. IUT/SUT

I l l * t 1

Figure 6: Implementation of TTCN Test Cases

8 Conclusions

This paper discusses testing of service components of TINA services, which is
considered as a specific application of the ISO conformance testing methodology.
Related work is considered, which identifies the open issue of using TTCN for
describing abstract test cases for TINA services as well as to execute them in a
CORBA based environment.

Subsequent to that, conformance test objectives for TINA services are identified. We
propose to test each interface of a service component separately. The test
development is supported by mapping rules of IDL to TTCN, which allow one to
generate test skeletons from the IDL specification of an interface. A test case for the
service access session gives a practical example for the mapping rules and explains
basic interactions between the system under test and the tested system. Subsequent to
that, the central idea of the TTCN/CORBA Gateway is presented. It supports the
implementation of executable tests from T'FCN test cases. With the use of the
"I'TCN/CORBA Gateway, these tests can be executed on any CORBA compliant
ORB (with minor efforts for ORB specific adaptation).

In future work, we will elaborate more on coordination features for parallel test
components and investigate real-time aspects of the "I'TCN/CORBA Gateway.

9 References

[1] The Open Group, Inter-domain Management: Specification Translation, preliminary specification, Feb.
1997.

[2] Object-Oriented Concept: Omnibroker manual, version 2.0.2, Dec. 1997.
[3] Thomas J. Mowbray, Ron Zahavi: The Essential CORBA, John Willey & Sons, Inc., 1995.
[4] TINA-C Baseline Document: Service Architecture, Version 5.0. June 1997.
[5] TINA-C Ret Reference Point Specification, RFR/S, Version 0.7, Sept. 1997.

4 0 8 I n a S c h i e f e r d e c k e r e t al S e r v i c e C r e a t i o n

[6] TINA-C Stream Deliverable: Service Component Specification - Computational Model and Dynamics.
Version 1.0b, Sept. 1997.

[7] TINA-C Baseline Docmnent: TINA Object Definition Language Manual, Version 2.3. July 1996.
[8] OMG: The Common Object Request Broker Architecture and Specification, Version 2.2. Feb. 1998.
[9] ISO/IEC 10746-2, 10746-3, ITU-T Draft Recommendation X.902, X.903: Basic Reference Model of

Open Dislxibuted Processing - Part 2: Foundation, Part 3: Architecture, Feb. 1995.
[10] A. Schill: DCE -das OSF Distributed Computing Environment, Einfiihrung und Grundlagen. Springer

Verlag, 1996.
[11] Telelogic: The SOMT Method in Tau 3.2 Methodology Guidelines, Telelogic, Maim6, Oct., 1997
[12] M. Born, A. Hoffmann, M. Winkler, N. Fischbeck, LFischer: Towards a Behavioral Description of

ODL.- TINA Conference '97, Santiago de Chile, 1997.
[13] J. Grabowski: SDL and MSC Based Test Case Generation - An Overall View of the SAMSTAG

Method. - Technical Report IAM-94-005, University of Bern, May 1994.
[14] ISOFIEC 9646: Information technology - Open Systems Intercounection - Conformance testing

n~thodology and framework. 1994.
[15] I80/IEC9646: Part 3: The Trce and Tabular Combined Notafion (TrCN), Edition 2, Nov. 1997.
[16] L . P . Lima Jr., A. R. Cavali: Test Execution of telecomnmnications services. - hi Proc. of IFIP

FMOODS '97, Canterbury UK, 1997.
[17] S. Rao, Ch. BeHanna, M. Sun, J. Forys: CORBA Service Test Environment. - NEC Systems

Laboratory, Inc., Apr. 1997.
[18] W. Schiitz: On the Testability of Distributed Real-Time Systems. - Report of the ESPRIT Basic

Research Project 3092 ,,Predictably Dependable Computer Systems".
[19] A. Ulrich: Test Case Generation and Test Realization in Distfihnted Systems. - PhD Thesis (in

preparation, in german only), Otto-von-Guericke-University Magdeburg, Germany, Sept. 1997.
[20] TOSCA Deliverable 6: Service Creation: the TOSCA Paradigm and Framework Approach. -

AC237/BT/DS/P/019/B 1, 1997.

